Importance of Gender Homophily in the Computer Science Classroom

ROLI VARMA AND MARCELLA LAFEVER

The number of women earning bachelor's degrees in computer science (CS) peaked at 15,126 in 1986 but plunged to 7,063 by 1995. Since then, the number has increased slightly to 10,474 in 2000 [18, tab. 2-22]. Yet, a survey of incoming freshman in 2002 revealed that only 3.2 percent of women planned to major in CS, compared to 14.6 percent of men [17, p. 2-6]. Although a growing number of women earn master's degrees in CS (from 2,786 in 1995 to 4,868 in 2000), there is a marked decline in the number of women earning doctoral degrees (from 186 in 1995 to 155 in 2001) [18, tabs. 2-24, 2-26].

The problem of disproportional representation of women in the CS discipline in post-secondary education has become a major concern [2], [28]. In recent years, scholars have identified a number of possible factors that affect the enrollment and retention of female students in CS programs. These factors include exposure to computers and gender socialization [27], gender bias in software design [8], motivational differences [13], differences in learning strategies and behaviors [10], [24], negative attitudes toward women in CS programs [6], and masculine CS culture [12].

This study explores how particular communication behaviors influence women's experience of the CS classroom in the United States. In particular, it investigates the correlation between students' perceived gender similarities with others in the CS discipline or homophily [23], their feelings about the closeness and openness of communication between people or immediacy [21], the resulting presence or absence of a supportive communication classroom climate, which is understood as a set of systemic entities whose presence and dimensionality may be inferred from students' and teachers' perceptions of psychosocial attributes of the classroom social system [32], and finally, their intention to remain in the CS program.
Teacher immediacy has been posited to have a linear relationship with increased student learning [20]. The more students feel they can communicate openly with their instructors, the better they are likely to do in learning outcomes. Although student involvement in the learning relationship with the teacher has been studied to some degree [15], student-to-student immediacy has not been adequately theorized in the literature. The dynamic of student-to-student immediacy may be of particular interest in a field of study such as CS, which has a strong, male-dominated classroom culture [12]. Both teacher immediacy and student immediacy are necessary to create a supportive communication climate in the classroom.

Homophily has been shown to be closely related to the frequency of communication and interpersonal attraction between two or more individuals [22]. If students could be encouraged to find similarities among themselves rather than focusing on apparent differences related to gender, they might feel more comfortable with one another in the classroom, which would lead to greater immediacy and a more positive learning environment.

Studies on classroom climate have shown that students associate their opinions of a class with the degree of support and sense of personal value that they receive from the instructor. To a limited degree, the importance of peer relationships in establishing a supportive communication climate in a classroom setting has been identified [14], [19]. Feelings of interpersonal familiarity and acceptance by peers can mitigate general anxiety in the classroom [25]. However, despite the existing research on communication climate in the educational setting, no studies have connected teacher-immediacy, peer-immediacy, and homophily to conceptualize an overarching classroom communication climate. It is our proposition that all three must be measured in conjunction to understand the formulation of classroom climate and its effects on female students.

The perception that gender differences exist in the classroom predicts that meaningful communication will not occur and that a positive interpersonal relationship will not exist between male and female students in the classroom.

Data Samples and Reliability

This paper examines classroom climate as it correlates to student satisfaction in the CS classroom, and considers the influence of gender homophily, teacher immediacy, and peer immediacy on satisfaction. It examines the following hypothesis:

H1: Teacher immediacy and CS program satisfaction will be correlated positively.
H2: Peer immediacy and CS program satisfaction will be correlated positively.
H3: Gender homophily and CS program satisfaction will be correlated positively.

The data for this study were gathered in 2002 and 2003 through in-depth interviews as part of a larger project on women in information technology. Interviews were conducted with 66 undergraduate students majoring in CS at four institutions of higher education that were designated as Minority-Serving Institutions (one historically Black university, two Hispanic-serving institutions, and one tribal university). These students were in their second and third years of CS study. All interviews were conducted by Roli Varma, principal investigator on the project, to ensure that data collection was consistent. Random sampling was used to select subjects with sufficient numbers of women and men. However, purposive sampling was used when the numbers of women and men majoring in CS was small (e.g., Native Americans). The sample size of 66 students included 35 females and 31 males. The sample was ethnically diverse: 22 Whites (11 female, 11 male); 15 African Americans (7 female, 8 male); 10 Hispanics (5 female, 5 male); 10 Native Americans (8 female, 2 male); and 9 Asian Americans (4 female, 5 male). This sample size was considered adequate to detect medium effects on gender. Each student was asked the same 61 questions and 15 of those questions provided the specific data on the concepts of teacher immediacy, student immediacy, gender homophily, and classroom climate (Table 1).

A content analysis coding scheme was developed based on four variables: teacher immediacy, peer immediacy, gender homophily, and satisfaction in CS. The following terms were operationalized:

1) Teacher immediacy was any comment about a negative or positive interpersonal communication relationship with an instructor or a teaching assistant. Example: “Doesn’t have time to give personal attention to students;” = negative teacher immediacy. “When I ask questions they help;” = positive teacher immediacy.
2) Student immediacy was any comment about a negative or positive interpersonal communication relationship with
another student studying CS. Example: “Thinking that you can’t do anything on your own without their [male students’] assistance,” = negative student immediacy. “They [the other students] always treated me like one of the group,” = positive student immediacy.

3) Gender Homophily was a single category utilizing any comment designating that there was (yes) or was not (no) a difference in CS students based on gender. Example: “I don’t see any difference in me being a woman;” = difference no. “The women don’t speak up,” = difference yes.

4) Satisfaction was any comment denoting an unreserved intention to stay in the CS department to complete a degree, any statement denoting that the person has never thought about changing their major from CS, or any statement that they are completely satisfied with their major. Examples: “No, never thought of changing my major,” “I always knew I would be in computer science,” and “There is nothing I don’t like.”

Two categories, negative and positive, were designated for teacher immediacy. Two categories, negative and positive, were designated for peer immediacy. Two categories, yes and no, were designated to measure any perceived difference between students in CS based on gender. One category “yes” was designated for satisfaction. This created seven categories. Statements were coded only once in a single category, creating an exclusive coding system. Each interviewee was designated by a numeric label (1-66) and each interview question was designated alphabetically. Therefore, each coded statement was designated by an alphanumeric label.

Two trained coders coded the interviews to ensure that data coding was consistent. Each coder was first given the same data comprising 20 percent of the interview responses. After reconciling differences, the remaining data was then coded. Inter-coder reliability [11] for each category was assessed using Scott’s P, and reliability was established between coder one and coder two. Reliability for peer immediacy was 0.84, for teacher immediacy 0.77, for gender homophily 0.87, and for satisfaction 0.79. Overall, reliability was 0.81. All of these values are within the acceptable range for reliability. A total of 330 items were coded.

The data were analyzed in three stages. First, frequencies for all variables, including demographic variables, were investigated. Second, a number of bivariate relationships were computed using a chi-square analysis (Table II). Gender, immediacy, homophily, and satisfaction were measured against demographic variables such as ethnicity (White/ non-White) and year in the CS program. Third, stepwise logistic regression was used to explore the relationships between the variables that were included in the hypotheses of the present study. A logistic regression model was tested with satisfaction as the dependent variable, and teacher immediacy, peer immediacy, and gender homophily as the independent variables.

Gender Homophily a Significant Retention Predictor

The first hypothesis predicted that teacher immediacy and CS program satisfaction would be correlated positively. No significant bivariate relationship (Table II) was found between teacher immediacy behaviors and CS program satisfaction and it was therefore not included as a significant predictor in the logistic regression model. Hypothesis One was not supported.

The second hypothesis predicted that peer immediacy and CS program satisfaction would be correlated positively. No significant bivariate relationship (Table II) was found